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LETTER TO THE EDITOR 

Symmetry breaking patterns for third-rank totally 
antisymmetric tensor representations of unitary groups 

C J Cummins and R C King 
University of Southampton, Southampton, SO9 SNH, England 

Received 2 April 1984 

Abstract. Some possible symmetry breaking patterns for unitary group gauge theoretic 
models based on Higgs scalars in the third-rank totally antisymmetric tensor representations 
of U(n) are studied. The critical points are expressed in terms of a single parameter 6 
such that l / n  s 6s 1/3. It is shown that spontaneous symmetry breaking may take place 
from SU(n)  to SU(3)xSU(n-3)  foi  all n, from SU(6) to SU(3)xSU(3), from SU(7) to 
G2,  from SU(8) to SU(3) and from SU(9) to U ( l ) X U ( l ) x U ( I ) x U ( l ) .  The absolute 
minima are shown to be degenerate for n 2 9, and remarks are made concerning a conjecture 
of Michel. 

In building unified gauge theoretic models of the fundamental interactions the breaking 
of the symmetry with respect to the original gauge group G is often achieved through 
the introduction of a set of Higgs scalar fields cp which form the basis of some 
representation AG of G. There then exists a corresponding G-invariant potential V(cp) 
whose absolute minimum occurs at some non-zero value of cp. The fields are said to 
acquire this non-zero vacuum expectation value and the symmetry breaks spontaneously 
from G to the little group, or isotropy group, H, of cp, at the absolute minimum. The 
requirement of renormalisability is such that V(cp) is necessarily a multinomial in the 
components of cp of degree no greater than four. 

It is of some mathematical interest to explore systematically the possible symmetry 
breaking schemes for a variety of gauge groups G and representations AG A start was 
made on this programme by Li (1974) who in considering the groups SU( n) and SO( n )  
examined Higgs fields in the defining, adjoint and the symmetric and antisymmetric 
second-rank tensor representations. Proceeding to the kth rank antisymmetric tensor 
representations of these groups might seem to be a very modest extension of these 
results. However, even the first step of analysing the third-rank antisymmetric tensor 
representations is non-trivial as evidenced by the preliminary results of Kim (1982a) 
and Jetzer er a1 (1983). A major difficulty is that, despite the claim of Kim, there does 
not appear to exist a canonical form for a third-rank totally antisymmetric tensor of 
SU(n) analogous to that which exists in the second-rank case. However, some such 
forms are available (Schouten 1931, Gurevich 1934, 1935, 1964) for the tensors of 
GL( n) in the cases n 4 8. These forms are used here to obtain critical points of V(cp). 

We also show that it is possible to obtain bounds on the absolute minima of V(cp) 
and then to saturate these bounds, thereby establishing possible symmetry breaking 
patterns. This is done by considering the critical points already obtained for n S 8 and 
by an ad hoc procedure for n 3 9. In this way we demonstrate a rich variety of symmetry 
breaking patterns. 
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Our results have a bearing on a conjecture of Michel (1979). This states that if cp 
forms a basis of a representation of the group G that is irreducible over the reals, and 
if V(cp) is a real fourth-degree G-invariant potential that is bounded from below with 
a maximum at the origin, then the little group of the absolute minimum of V(cp) is a 
maximal little group of the full symmetry group G of V(cp). We no_te that in other 
formulations of this conjecture (Slansky 1981) the requirement that G rather than G 
is the relevant group is replaced by the requirement that radiative corrections be 
considered. In general these two requirements are not equivalent. We show that there 
is the possibility of breaking from U(n) to a little group whose Lie algebra is non- 
maximal amongst the set of all Lie algebras of little groups (we shall refer to such Lie 
algebras as stationary subalgebras). Hence the little group itself can only be maximal 
by virtue of finite group elements not connected to the identity. This would seem to 
limit the usefulness of Michel's conjecture. 

The most general SU(n) invariant potential of fourth degree in the components 
a i j k  of a totally antisymmetric third-rank tensor takes the form 

Pd 

with all the indices summed over the values 1 ,2 , .  . . , n and necessarily n 2 4. 
If the potential is to be bounded from below, then A,>  0 requires nA, + A 2 >  0 and 

A2<0 requires 3 A l  + A 2 >  0. For the potential to have a local maximum at the origin 
it is required that p2> 0. The components (Pijk form the basis of the {13} representation 
of SU( n) of dimension N = n( n - 1) (  n - 2)/6, whilst the components pijk ( = pijk*) 
form a basis of the contragredient representation {T3}, which in SU(n) is equivalent 

The complete representation { 13} +{I3} is irreducible over the reals and has 
dimension 2N. The complete set of orthogonal transformations of the corresponding 
real vector space constitutes the group O(2N). The relevant group-subgroup chain 
takes the form O ( 2 N )  =I SO(2N) 3 U( N )  3 U(n) =I SU( n), with the corresponding 
branchings 

to 

[I]  -+ [ 13 .+ { 1) +{i} + { i3} +{i3} + { i3} +{I n - 3 } .  

Each link of this chain involves a maximal embedding so that the full symmetry 
group 6 of the potential (l),  in the case where the original symmetry group G is 
SU(rl), can only be one of the listed groups (provided we only admit orthogonal 
representations). If A2 Z 0 then we rule out 0 ( 2 N ) ,  S 0 ( 2 N ) ,  and U(N)  since they 
each possess only a single fourth-degree invariant, namely the term in A , .  In this case 
it is then clear that U(n) is the full symmetry group 6 of V(cp). 

We next define the parameter 5, and derive the bounds on the absolute minima of 
V(cp). The potential ( 1 )  can be written in the form 

where 
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Taking into account the antisymmetry of q i j k  the conditions for critical points, 
namely 

a v / a Q i j k  =o, (4) 

take the form (Jetzer et ~l 1983) 

Contracting with p i j k  gives 

e;ep,=o ( 6 )  

so that substitution in (2) gives the value of V(cp) at the corresponding critical point 

v ( ~ )  = ap2 1 e;. (7) 
P 

Defining 5 (for A 2  # 0, cp # 0) by 

cL2 = ( A I  +5A,)C 0; 
P 

and substituting in (6) gives (cf Kim 1982b) 

Next the Hermitian matrix 0; may be diagonalised by a suitable SU(n) transforma- 
tion (which preserves the form (3) of the relationship between 6: and Q i j k ) ,  so that 
(no summation over p) 

e; = e p p ,  (10) 
with 8; L 0. Using this diagonal form of e;, (9) becomes 

and the critical point conditions ( 5 )  are just 

-p2 + A ,  e; +fh2( e: + e: + e : )  Q ~ ~ ’  = o (12) ( P ) 
with no summation over r, s, t. It follows, using (8), that for all triples (r, s, t )  such 
that 4rs, # 0: 

;(e: + e; +e:) = 6 C e;. 
P 

From ( 1  1) and (13), using the fact that in (lo), 6; 3 0 for all p,  we obtain the bounds 

1 / n  6 e s f .  (14) 
Using (7) and (8) gives the value of V(cp) in terms of the parameter 5 at the 

corresponding critical point 

V ( 9 )  = - b 4 / ( A i  + 5 A 2 ) .  (15) 



L630 Letter to the Editor 

The conditions for the potential to be bounded below and the limits on 5 mean 
that the asymptote of V(Q) always occurs outside the range of 5. Thus it is found that 
V(Q) decreases or increases monotonically with 6 depending on the sign of h2 and so 
we get the following bounds: 

for -3hl < h2 < 0 and 

for h 2 > 0  and n h l + h 2 > 0 .  
Note that the first bound can only be attained, for all n, by having one component 

of Q non-zero, say 50123 = a. 
The canonical form of a second-rank antisymmetric tensor Q~, is well known and 

it is convenient to specify the non-vanishing components of such a form (pI2 = a, 
Q ~ ~ =  b, . . . with a maximum of [n/2] such terms. It appears that no such form is 
available in the literature for the case of a third-rank antisymmetric tensor Ql,k. The 
form Q~,,  = a, (0456= b, . . . (Kim 1982a) is not canonical, but the conjecture by Jetzer 
et a1 (1983) that the required form is always such that Qyk # 0 and qDvm # 0 implies that 
k = rn may well be true. This guarantees that 0; is diagonal, as required by the above 
analysis, and enables many candidate solutions to be studied. Moreover this conjecture 
is consistent with the canonical forms which are available for GL( n) for specific values 
of n. Following Schouten (1931) and Gurevich (1934, 1935, 1964) we consider the 23 
forms for 4 S n S 8. In each case there is a set of values of the non-vanishing components 
of the form which corresponds to the critical points of (1) .  Equation (13) fixes the 
solution up to a constant a, which may be found using (8), and the corresponding 
value of 6 is uniquely determined. 

For n = 4 there is only one non-vanishing solution ~ 1 2 3  = a, leading to 5 = f .  
For n = 5 there are two solutions ~ 1 2 3  = a and (PI23 = (PI45 = a leading to 6 =; and 

5 = $ respectively. 
For n = 6 there are four solutions p i 2 3  = a, VI23 = (PI45 = a, 9 1 2 3  = Q~~~ = Q246 = a, and 

'PI23 = Q456 = a giving 5 = ~ , g ,  m and & respectively. The latter corresponds to the bound 
(17) on the absolute minimum in the case h2 > 0. 

For n = 7 there are nine solutions with 6 ranging from f to f, and for n = 8, 22 
solutions with 5 ranging from f to $. The bound (17) on the absolute minimum for 
h2 > 0 is attained in these two cases through the solutions 

Q246 = Q357 = h a ,  

I 2 5  

9 1 2 3  = 9 1 4 5  = (PI67 = a, 

for n = 7 and 

for n = 8. 
The identity component of the little groups of the various critical points found as 

solutions to (17) may be determined by noting that the generators of the little group 
take the form CiJ yjE{,  where E{ for i , j  = 1,2, . . . , n are the standard generators of 
GL( n) and the constraint yj = ~* ensures that they belong to U( n). The coefficients 
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$ which characterise the algebra of the little group H are those for which 

( ?'P(Ppjk 4- ?f(Pipk -4- YPk(Pijp = 0 
P 

for all i,j, k 
Statements here about symmetry breaking patterns should be viewed as statements 

about the identity component of the relevant little groups. 
This is in line with the convention adopted in most gauge theoretic calculations of 

symmetry breaking. For n 3 4 and -3hl < h2 < 0 the little group corresponding to the 
absolute minimum is SU(3) x U( n - 3) if G is U( n) and SU(3) X SU( n - 3) when G is 
SU(n). It only remains to consider the case A2>0 .  This restriction is assumed 
henceforth. 

Apart from the distinction between U( n) and SU( n) the cases n = 4,5 and 6 have 
been covered by Jetzer et a1 (1983). The absolute minima correspond to symmetry 
breaking from U(4) to SU(3)xU( l )  and SU(4) to SU(3), from U(5) to Sp(4) XU(1) 
and from SU(5) to Sp(4), and from both U(6) and SU(6) to SU(3)XSU(3). In the 
case of U(6) the little group is that of ( ~ l 2 3 = ( ~ 4 5 6 = a  and illustrates the difference 
between a maximal stationary subalgebra and a maximal little group. The Lie algebra 
of this little group is strictly contained in the Lie algebra of another little group 
SU(3) x U(3), corresponding to ( ~ 1 2 3  = a. However, there is a discrete group Z2 gener- 
ated by (14) (25) (36) E U(6) which leaves the first point fixed, but not the second. So 
the little group of p i 2 3  = (0456 = a is not contained in the little group of ( ~ 1 2 3  = a. In 
fact both are maximal so that Michel's conjecture is not violated. However, the analogue 
of the conjecture in the case of Lie algebras is clearly violated by this U(6) example 
and the conjecture loses much of its usefulness. 

In the case of U(7) and SU(7) the various little groups of the critical points, together 
with the corresponding values of 6, are shown in figure 1. The absolute minima involves 
symmetry breaking from U(7) and SU(7) to G2, which is a maximal little group. 

The corresponding results for U(8) and SU(8) are very complicated and will not 
be presented here. It suffices to say that the little group of the absolute minimum is 
the maximal little group SU(3) embedded in both U(8) and SU(8) via its adjoint 
representation. 

For n = 9 and A 2  > 0 it transpires that one solution attaining the bound (17) is easy 
to write down. The solution is ( ~ 1 2 3  = (P456 = (P789 = a, first given by Kim (1982a), which 
leads to breaking from U(9) and SU(9) to SU(3) xSU(3) xSU(3). However, there are 
at least three others attaining the same bound corresponding to breaking to SU(3) x 
U(1) XU(l),ortoSU(3),orto U(1) xU(1)  XU(1) XU(1). Ofthecorrespondingstation- 
ary subalgebras the last two are not maximal although the first is maximal. Thus for 
example the solution (PI23 = (Pi45 = (PI67 = (PI89 = (P249 = 9 2 5 6  = (P278 = 9 3 4 7  = 9 3 6 9  = (P358 = 
(P468 = Q~~~ = a provides an example of an absolute minimum with breaking to U( 1) x 
U( 1)  XU( 1) x U( 1) whose corresponding stationary subalgebra is not maximal. 

More surprisingly the case n = 10 yields an absolute minimum whose little group 
can only be finite since all the coefficients yj in (18) are zero. This solution is 
( P l 2 3 =  ( P 4 6 1 0 = ( P 5 9 1 0 = ( P 7 8 1 0 = ~ a ,  ( P l 4 5 = ( P 1 6 7 = ( P 1 8 9 =  (P247=(9269=  ( P 2 5 8 = ( P 3 4 9 = ( P 3 6 8 =  

Q357 = a* 
The bound (17) on V ( q )  is attained for all n > 6 for at least one solution to the 

critical point conditions (4). This can be seen by combining the solutions for n = 7 ,8 ,9  
with ( ~ n - 2 ,  n - 1 .  n - ( ~ n - 5 ,  n-4. n - 3 = .  . . (Pn-3k-2, n - 3 k - 1 ,  " - 3 k =  a for k=[n/3]-2. In general 
other, degenerate, solutions exist. We note that for the cases n 3 9  the degenerate 

- 
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SU(3) XU(4) Sp(6)XU(l )  Sp(4)xU(2)XU(I)  S U ( 3 ) x U ( l ) x U ( l )  S U ( 2 ) x S U ( 2 ) x U ( 1 )  G2 
s=: s=h s=$ 

Figure 1. ( a )  Identity components of little groups of critical point solutions derived'from 
Gurevich's canonical forms as subgroups of U(7). 

SU(3) XSU(4) G2 Sp(6) Sp(4) XSU(2) XU(1) SU(3) XU(1) 
s=; / s=+ s=b (=; s=b I \I 

SU(3) XSU(3) SU(2) xSU(2)  

(=' 45 ,$=; 

Figure 1. ( b )  Identity components of little groups of critical point solutions derived from 
Gurevich's canonical forms as subgroups of SU(7). 

minima probably give rise to pseudo-Goldstone bosons (Georgi and Pais 1975) and 
that an effective potential calculation would be necessary to determine the true sym- 
metry breaking pattern. 

Although counter-examples to the conjecture of Michel exist in the case of discrete 
groups G (Jaric 1983), we have been unable to produce a clearcut counter-example in 
the case of compact continuous Lie groups. We speculate that a more complete analysis 
using canonical forms for n 2 9 and dealing with finite subgroups could produce such 
an example. 
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